Downscaling Land Surface Temperatures Using a Random Forest Regression Model With Multitype Predictor Variables
نویسندگان
چکیده
منابع مشابه
Downscaling Land Surface Temperature in an Arid Area by Using Multiple Remote Sensing Indices with Random Forest Regression
Many downscaling algorithms have been proposed to address the issue of coarse-resolution land surface temperature (LST) derived from available satellite-borne sensors. However, few studies have focused on improving LST downscaling in arid regions (especially in deserts) because of inaccurate remote sensing LST products. In this study, LST was downscaled by a random forest model between LST and ...
متن کاملImproving the Downscaling of Diurnal Land Surface Temperatures Using the Annual Cycle Parameters as Disaggregation Kernels
The downscaling of geostationary diurnal thermal data can ease the lack of land surface temperature (LST) datasets that combine high spatial and temporal resolution. However, the downscaling of diurnal LST data is more demanding than single scenes. This is because the spatiotemporal interrelationships of the original LST data have to be preserved and accurately reproduced by the downscaled LST ...
متن کاملEvaluation of risk factors of recurrence of hodgkin\'s lymphoma using random survival forest and comparison with cox regression model
Background: In many studies, Cox regression was used to assess the important factors that affect the survival of cancer patients based on demographic and clinical variables. The aim of this study was to determine the factors affecting the survival of patients with Hodgkin's lymphoma using the random survival forest (RSF) method and compare it with the Cox model. Methods: In this retrospective ...
متن کاملDownscaling land surface temperatures with multi-spectral and multi-resolution images
Land surface temperature (LST) plays an important role in many fields. However, the limited spatial resolution of current thermal sensors impedes the utilization of LSTs. Based on a theoretical framework of thermal sharpening, this report presents an Enhanced Generalized Theoretical Framework (EGTF) to downscale LSTs using multi-spectral (MS) and multi-resolution images. MS proxy-sharpening and...
متن کاملIdentification of Factors Affecting Metastatic Gastric Cancer Patients’ Survival Using the Random Survival Forest and Comparison with Cox Regression Model
Background and Objectives: In survival analysis, using the Cox model to determine the effective factors requires the assumptions whose failure of leads to biased results. The aim of this paper was to determine the factors affecting the survival of metastatic gastric cancer patients using the non-parametric method of Randomized Survival Forest (RSF) model and to compare its result with the Cox m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2896241